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= Fabrication of High V asymmetric waveform
drivers in a small form factor is challenging

= To relax the demand on the electronic drivers
we want to narrow the gap size (g) (so higher
fields may be generated with lower drive
voltages)
— at 35 um, V = 270V yields E; =
80kV.cm™ (320Td at 1atm)

— at 250 um V= 2000V is required

= However -

— A narrow gap requires high flow to
support ion transmission (and sensitive
detection)

— But this leads to peak broadening

— Cannot therefore rely on a separation
single gap
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Narrow gaps have been used to push the
operational field limits in DMS / FAIMS but with
penalties...

lon channels must be kept short to sustain
acceptable ion transmission (sensitivity)

Fast ion separation time is achieved t,,. ~ 35us
(allowing very fast E:E, scanning) but peaks are
broadened by the t,. .term in the equation
defining peak capacity

Also, the D, leads to significant transmission loss
at high fields (esp. for smaller, high K, analytes)

Consequence is moderate resolution & reduced

data rate (necessary to sample ion current on a

timescale >> t,,/)

Conclusion is separation device is not fully
optimal
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Comparing planar gaps

* Narrow gap hits transmission

* High flow (short residence

time) hits resolution (peak
width)

At g, = 35um and flow =
375cm3.min*, w,,, ~ 0.3Td (at
latm)and T~ 7%

This puts us close to the bottom
end of the W, , curve which is
good, but the ion transmission
here is rather poor - there is
sensitivity penalty for resolution
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Clear Solution = — ——— T (@LSTONE
Wider Gaps Gap width (g) 35 vs.100pm
= Higher flow Length (l) 300 vs. 700pm

Area (A) 15 vs. 20mm?

" Greater ion transmission
without resolution penalty DF range (E,/N) 350Td vs. 320Td

Res. time (t.,) ~40us vs. ~120us
Longer channel

= |ncreased residence time Narrow gap Wide gap

= Narrower peak without
transmission penalty
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But...

= Need much higher voltage
field drivers....
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550V on 75um gap = 78kV.cm (> 320Td at 1 atm)

<f,> nearer “optimums” for 2-harmonic

waveform and stable at high drive voltages
(Shvartsburg 2009)
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New.Generahon : For K,=1.5cm2.V-1.s1
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Transmission increased by factor > 10 at
very high fields
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Ultimately we wish to explore the high
field region more rigorously

=1.8cm?V'l.em’!

= Effective lon Temperature (T,;) oc (Ep/N)? | ' Ko = 1.4 cm2.V-t.cm?

75 150 225 300

= High field ion chemistry in both small and >
Dispersion Field (Td)

large molecules is of interest

= |n small molecules (e.g. VOC sensing
applications) the ion transmission
spectrum holds valuable analyte
classification information — ions fragment | |
at high field <-

Response | .
ion current
(A.U.)

= For large molecules (in MS-hyphenated
solutions) it is possible to exploit other T
dependent processes (e.g. ion
conformational changes) to promote MS-
prefiltering
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