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DMS / FAIMS 101
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Why Ultra-High Field Operation?

Increase analytical space

Take advantage of high effective ion 
temperature (Teff) …
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𝐸𝐶  𝐸𝐷
2Truncating to only n = 1 

and n =2 terms (a1 & a2)….
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Shvartsburg 2009
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waveform moments <fn> 
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Challenges of Ultra-High-Field Operation

Peak V vs gap size (g) required to 

yield peak field of 75kV.cm-1

( = 320Td @ 1atm)

30020 50

▪ Fabrication of High V asymmetric waveform 

drivers in a small form factor is challenging

▪ To relax the demand on the electronic drivers 

we want to narrow the gap size (g) (so higher 

fields may be generated with lower drive 

voltages)

→ at 35 m, V = 270V yields ED 

80kV.cm-1 (320Td at 1atm)

→ at 250 m V 2000V is required

▪ However –

→ A narrow gap requires high flow to 

support ion transmission (and sensitive 

detection)

→ But this leads to peak broadening

→ Cannot therefore rely on a separation 

single gap



Enabling Ultra-High-Field Operation
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Performance Parameters

• Ion channels must be kept short to sustain 

acceptable ion transmission (sensitivity)

• Fast ion separation time is achieved tres ~ 35μs 

(allowing very fast EC:ED scanning) but peaks are 

broadened by the tres term in the equation 

defining peak capacity 

• Also, the DII leads to significant transmission loss 

at high fields (esp. for smaller, high K0 analytes)

• Consequence is moderate resolution & reduced 

data rate (necessary to sample ion current on a 

timescale >> tres)

• Conclusion is separation device is not fully 

optimal
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Narrow gaps have been used to push the 

operational field limits in DMS / FAIMS but with 

penalties…

𝐼𝑜𝑢𝑡
𝐼𝑖𝑛

= 𝐴𝐼(𝑖𝑛) .𝑄. exp
−𝑡𝑟𝑒𝑠.
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𝑔𝑒𝑓𝑓 = 𝑔 − (𝐾 0 . 𝐸𝑚𝑖𝑛. 𝑡)
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Resolution

Transmission

Effective gap width

Anisotropic diffusion
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Some Quantification…

Peak width

Transmission

Effective gap width

Anisotropic diffusion
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Simply…

𝑊1/2 =
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Comparing planar gaps 

• Narrow gap hits transmission

• High flow (short residence 

time) hits resolution (peak 

width)
▪ At geff = 35μm and flow = 

375cm3.min-1, w1/2 ~ 0.3Td (at 

1atm) and T ~ 7%

▪ This puts us close to the bottom 

end of the W1/2 curve which is 

good, but the ion transmission 

here is rather poor - there is 

sensitivity penalty for resolution

IT vs Gap width 
at constant flow 
(const. Tres) 

IT vs W½  at 
variable flow 
(variable Tres) 

𝐴𝐼(𝑖𝑛) .𝑄. exp
−𝑡𝑟𝑒𝑠. 

2. 𝐷𝐼𝐼
𝑔𝑒𝑓𝑓 2

𝐼𝑜𝑢𝑡
𝐼𝑖𝑛
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Clear Solution

Wider Gaps

▪ Higher flow

▪ Greater ion transmission 
without resolution penalty

Longer channel 

▪ Increased residence time

▪ Narrower peak without 
transmission penalty

But… 

▪ Need much higher voltage 
field drivers….

Gap width (g) 35 vs.100μm

Length (l) 300 vs. 700μm

Area (A) 15 vs. 20mm2

DF range (ED/N) 350Td vs. 320Td

Res. time (tres) ~40μs vs. ~120μs

Narrow gap Wide gap
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Waveform Analysis & Comparisons

250V

550V

550V on 75μm gap = 78kV.cm-1 (> 320Td at 1 atm)

<fn> nearer “optimums” for 2-harmonic 
waveform and stable at high drive voltages 
(Shvartsburg 2009)
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Transmission & Resolution Comparison

Peak width reduced by factor ~ 2 (and 

better at reduced flow)

Transmission increased by factor > 10 at 

very high fields 

For K0 = 1.5cm2.V-1.s-1

For K0=1.5cm2.V-1.s-1

0.2Td

0.35Td

Constant flow 
(400cm3.min-1)

For K0=1.5cm2.V-1.s-1

At 150Td
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Experimental (Large ions up to 1.5kDalton)

ED = 220Td ED = 220Td

35μm device 100μm device

m/z 35μm 0Td 100μm 0Td 35μm 220Td 35μm 220Td 35μm 300Td 100μm 300Td

118 10 35 1.5 7 <1 1

322 15 50 4.5 20 1.5 8

622 60 60 35 50 5 15

922 70 80 60 70 15 45

1522 80 100 35 95 20 90
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What to do with it?

Ultimately we wish to explore the high 
field region more rigorously

▪ Effective Ion Temperature (Teff)  (ED/N)2

▪ High field ion chemistry in both small and 
large molecules is of interest

▪ In small molecules (e.g. VOC sensing 
applications) the ion transmission 
spectrum holds valuable analyte 
classification information – ions fragment 
at high field

▪ For large molecules (in MS-hyphenated 
solutions) it is possible to exploit other Teff

dependent processes (e.g. ion 
conformational changes) to promote MS-
prefiltering EA
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Interesting avenues?
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